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Abstract. The surface energy of the antiferromagnetic spin-f XXZ Heisenberg chain is 
derived in the region A < -1 from the known Bethe ansatz solution for free boundaries 
with surface fields. The result gives the surface energy of related models satisfying the 
Temperley-Lieb algebra. The models discussed are the quantum Q-state Potts chain and 
a family of isotropic spin-s chains including the spin-1 biquadratic model. 

1. Introduction 

Bethe’s ansatz 113, originally for the wavefunction of the isotropic spin-: Heisenberg 
chain, together with its subsequent generalisation, has been seen to encapsulate the 
basic physics of all the exactly solved models (see, e.g., [2-51). Traditionally, one 
imposes periodic boundary conditions. Typical is the one-dimensional Bose gas [ 6 ] ,  
where the particles occupy a circle and the boundary considerations turn into periodicity 
conditions on the wavefunction. However, when the system is enclosed in a ‘box’, the 
wavefunction must vanish at the two ends of the interval. In this case Gaudin [7] 
constructed the Bethe ansatz (BA)  wavefunction by explicitly allowing for the superposi- 
tion of waves reflecting from the ends. He then calculated the boundary or ‘surface’ 
energy of the Bose gas in its ground state. It was also Gaudin who gave the BA solution 
of the XXZ Heisenberg chain with free boundaries [4,7]. 

A more general XXZ spin chain, with Hamiltonian, 

was recently considered by Alcaraz er al [8,9]. This model has also been discussed 
by Sklyanin in the framework of the quantum inverse method [lo]. 

Here we define the surface energy, f, by 

f =  lim ( E o -  Ne,) 
N-a 

where e, is the ground-state energy per site, Eo/ N,  in the infinite-size limit. The surface 
energy of (1.1) was derived for IAl< 1 by Hamer et a1 [ 111 using a systematic method 
proposed by de Vega and Woynarovich [ 121 for calculating finite-size corrections in 
BA systems. 
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The values of the parameters A and p of particular interest [8,9] are those satisfying 

A' - p 2  = 1. 

For this case we have the result [ l l ]  

(1.3) 

f ( A )  =----- 7T sin cos sin {-: dx[ 1 -co th(y) tanh(y) ] .  (1.4) 2Y 2 4 

Here A = -cos y and p = i sin y, with y E [0, 7 ~ ) .  Our result for p = 0 is 

f ( B ) = - - - - -  7T sin 'Y 'Os sin dx[ 1 - t anh(y ) t anh(y ) ] .  (1.5) 
2Y 2 4 

We have evaluated these integrals for a few values of y, and give the corresponding 
values o f f  in table 1. 

Table 1. Exact values of the surface energy integrals (1.4) and (1.5) for the XXZ Hamil- 
tonian (1.1). 

Y f ( A )  A B )  

n / 2  1 1 - 2 / n  

n/4 ( 3 n - 4 ) / 2 & ~  112a 

0 f ( n  - 1) -log 2 j(n - l ) + l o g  2 

7 / 3  t a( 6J3 - 9) 

n / 6  ( 6 & - 1 ) / 4 f i  (357 - 2 ) / 2 n -  1 1 / 1 2 f i  

The Hamiltonian (1.1) for case ( B )  (i.e. for p = O )  is directly related [8, 131 to the 
quantum Hamiltonian of the critical Ashkin-Teller model [ 131 with free boundary 
conditions. In this way the surface energy of the Ashkin-Teller chain follows from 
f ( B ) .  On the other hand, for case ( A )  (i.e. for p satisfying (1.3)) (1.1) is related [8, 141 
to the quantum Hamiltonian of the critical Q-state Potts model [14, 151. In this case 
the surface energy of the free Potts chain for Q 4 4 is related to f( A).  The surface 
energy of the critical two-dimensional Potts model and the corresponding six-vertex 
model have recently been calculated by Owczarek and Baxter [16]. 

In this paper we extend our calculations for the spin chain into the region A <  -1. 
The analogous result for f ( A )  is derived in section 2 .  Then in section 3 we use the 
result for f ( A )  to write down the surface energy of the Potts chain, now for Q > 4. In 
section 4 we use our results to give the surface energy of a family of integrable isotropic 
spin-s chains which are related to the Potts and X X Z  chains via the Temperley-Lieb 
algebra [17, 181. A discussion of the results is given in section 5 .  

2. Surface energy of the XXZ chain 

In order to derive the surface energy, we begin by following our earlier treatment for 
[AI < 1 [ l l ]  (see also [16]). However, because the system is massive, the treatment is 
more akin to the earlier calculations of de Vega and Woynarovich [12] for periodic 
boundary conditions. In particular, Fourier integrals for the massless case are to be 
replaced by Fourier series. 
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For A <  -1, we set 

A =  -cosh 8 

with p = sinh 8. The BA equations [9,10] can then be written 

2N4(aj ,  8) = 2PIj + [ f $ ( G j - a k ,  28)+ 4(aj f a k ,  28)] (2.2) 
k = l , k # j  

for j = 1 , .  . . , n, where 

4(a ,  8) = 2  tan-'[coth(8/2) tan(a/2)] OCaClT (2.3) 

and n is the number of down spins in the (T' basis-a good quantum number. The I j  
are integers with 

I . = j  for j =  1,. . , n (2.4) 

for the lowest eigenvalue for given n [4,7,9]. The ground state occurs in the largest 
sector, where n = N/2. For convenience we assume that N is even. 

The eigenvalues of Hxxz are independent of the parameter p and given by [9] 
n 

EN = +( N - 1) cosh 8 -2 sinh 8 #'(aj, 8) 
j = l  

where 

sinh 8 
cosh @-cos a' #'(a, 0) = 

(2.5) 

In order to proceed, we set a - k  = - ( Y k  with a. = 0. Then following E121 we define 

so that 

Z N  ( aj ) = I j /  N. 

The derivative 

is related to the root density. In the asymptotic limit, we have 

(2.10) 

This equation is readily solved by Fourier series (our definitions and some appropriate 
formulae are summarised in appendix l ) ,  with the result 

(2.11) 

To obtain the ground-state energy per site as N + CO, we first rewrite (2.5) as 

1 sinh 8 eN =tcosh  8+-(sinh @'(a, B)-fcosh e)-- C #'(aj, e) 
N N j = - "  

(2.12) 
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from which we can establish the result 

e,=fcosh e-sinh e dau,(a)+ ' (a ,  e). I_: 
This expression can alternatively be written 

em=;cosh8-sinh8 ,, = 1 + eZne 

(2.13) 

(2.14) 

as originally obtained for periodic boundary conditions by Orbach and Walker [ 19,201 
(see also Yang and Yang [21] and des Cloizeaux and Gaudin [22]). 

In order to get at the finite-size corrections, we turn to the difference between the 
finite and the infinite systems [12]. From (2.9) and (2.10) we have 

for the root density. And from (2.12) and (2.13) 

1 
eN-e,=-[sinhe+'(a,  O)-;cosh8]-sinh8 I w  d a 4 ' ( a , 0 ) S N ( a )  

N --71 

- sinh 8 d a  +'(a, e)[ oN ( a )  - a,( a ) ]  I:-71 
for the energy per site. In both equations 

1 "  
s N ( a ) = -  1 8(a-aai)-o,(a) .  

N j = - "  

Equation (2.15) can be solved by Fourier series, with the result 

(2.15) 

(2.16) 

(2.17) 

where 

1 OC 2cos na  
p ( a ) = - +  - 2 1+e2"' ' 

2cos2na 
cosh 2118 ' p * ( a )  = 1 + c 

Inserting (2.18) into (2.16) gives 

eN - em = - r sin h 0 I N  
N 

(2.19) 

(2.20) 

(2.21) 

where 

(2.22) 
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and g is the collection of terms with an explicit 1/ N dependence: 

g =  -~coshO+.rrsinhOa,(O)-sinh8 ). 1 + e4"' 
(2.23) 

For periodic boundary conditions, de Vega and Woynarovich [ 121 have shown that 
the integral IN decreases exponentially with N. So, at first glance one might conclude 
that the surface energy is simply given by the factor g (this is indeed the case for 
IAl< 1 [ l l ] ) .  However, for the present boundary conditions we establish in appendix 
2 that, to leading order, 

(2.24) 

where q = e-'. Thus from the definition (1.2) and (2.21) the surface energy is given by 

f = g - '  4Axxz (2.25) 

where Axxz is the known gap in the eigenspectrum of the periodic X X Z  chain [22,23]: 

(2.26) 

(2.27) 

The fact that Axxz appears in the result for the surface energy is somewhat 

EN - Ne,+ g -:Axxz as N+co. (2.28) 

In appendix 2 we have also examined the asymptotic behaviour of the integral I N  for 
the lowest eigenvalue in each of the remaining sectors of the Hamiltonian. Labelling 
the sectors by 

surprising. Explicitly, we have the ground-state energy behaving as 

N 
2 n = - - r  r=O,  1,.  . . (2.29) 

we find 

1%) - (1 + 4r) I N  as N + m  (2.30) 

so that 

(2.31) E ( ' )  - E(O) - 
N N rAXXZ 

i.e., we do indeed see the gap of the periodic X X Z  chain in the eigenspectrum. 

3. The quantum Potts chain 

The Q-state Potts model has a long history [5,24]. The Hamiltonian of the (1 + 
1)-dimensional quantum version [14,15] on a chain of L sites with free ends can be 
written as 
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The operators XI and Z, at site 1 obey a Z ( Q )  algebra 

x,z, = 0 -'z,x, x,z: = wz:x, xp=zp=1 (3.2) 

with 0 = 
Z = a', the usual Pauli matrices, when Q = 2. 

. In the low-temperature representation, we have, e.g., X = a x  and 

As normalised here, the Hamiltonian (3.1) is a direct sum 

(3.3) 

of Temperley-Lieb operators [25] 

1 '  --x x: -@ k = O  

1 '  

which obey the ubiquitous Temperley- ieb r-gebra [ 5 ,  

u:=vqu, UIUl*I U, = U, 

u,u, = UIU, for I k - I ( >  1. 

(3.4) 

(3.5) 

61 : 

(3.6) 

In order to make contact with the XXZ chain [8], we use the Temperley-Lieb 

(3.7) 

representation in terms of Pauli spin operators [26]: 

U,=f (a fa~+l+a:o~+I )+fcosh  8(l -afa;+,)+fsinh O(a;+, -a;) 

where 

@= 2 cosh e. (3.8) 

H Q @ H x x z ( ~ L ) - ~ ( ~ L - ~ )  cosh 8 (3.9) 

Substitution of (3.7) in (3.3) yields the operator equivalence 

where Hxxz(2L) is the Hamiltonian ( 1 . 1 )  defined on a chain of 2L sites. From (3.9), 
the ground-state energy per site of HQ is related to that of Hxxz by 

e L ( Q ) = 2 e $ y - ( l - & )  cosh@. (3.10) 

Thus for the infinite chain, we have the result 

e,( Q )  = 2e, - cosh 8 (3.11) 

with e, given in (2.14). The surface energy of the Potts model is simply 

fQ=f+iCOSh8 (3.12) 

with f as given in (2.25). Some results for e,(Q) and fQ as functions of Q are shown 
in table 2. Also indicated for comparison are the exact values? for 0 6 4 .  

t The exact expressions for e,(Q) are from the tabulated results of [8]; the corresponding values of fo 
follow from the equivalence, fQ =f(A)+$cos  y, with f (A)  as in table 1 and - = 2  cos y. 



Suface energy of integrable quantum spin chains 767 

Table 2. Numerical values of the ground state and surface energy of the @state Potts 
model (3.1). 

Q -e,(Q) fQ 

0 4 / r =  1.2732, .  . 1 
1 2 1 
2 
3 ( l m ) / 9 + 2 / r = 2 . 5 6 1 1 . .  . f - l / A = 0 . 9 2 6 6  . . .  
4 

A ( 1 + 2 / r )  = 2.3145 . . . 

4 log 2 = 2.7125 . . . 

A( 1 - l / r )  ~ 0 . 9 6 4 0 . .  . 

f~ -log 2 =0.8776. .  . 
9 3.5937. .  . 0.6550. .  . 

16 4.4688. .  . 0.4976. . . 
25 5.3840. .  . 0.3992. .  . 
64 8.2460. . . 0.2499. .  . 
CO 00 0 

4. The isotropic spin-s chains 

There has been a recent interest in constructing higher-spin representations of the 
Temperley-Lieb algebra [ 17, 18,27-291. The easiest representations to write down are 
those with isotropic interactions [ 17, 181. Specifically, 

U, = (- 1)2( x)2 [ S ,  * S",, + s(s + 1 )  - fk( k + l ) ]  
(2s)!  k=l 

(4.1) 

where S, is a spin-s operator acting at site n. The corresponding spin Hamiltonians, 
defined on a chain of N sites with free ends, are sums of the Temperley-Lieb operators, 

N-1 

H,= - U,, 
n = l  

(4.2) 

and are thus seen to be polynomials in the interactions S,, * S,,, . 
The Temperley-Lieb algebra, (3.6), is satisfied for 

dQ = 2s + 1. (4.3) 

For spin-; the representation (3.7) is recovered with e = 0, i.e. Q = 4. On the other 
hand for spin-1 

U, = ( S ,  S,,,)* - 1 (4.4) 

and Hs=l is directly related [28] to the Hamiltonian ofthe biquadratic spin chain [30,31] 

In this case the equivalence is with the nine-state Potts model [28,32]. 
Substitution of (3.7) in (4.2) yields 

H, e Hxxz - ;( N - 1 )  cosh 8 

where both Hamiltonians are defined on N-site chains and 

s+f=cosh  e. 
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From this equivalence, the ground-state energies of the two models are related by 

e N ( s )  = e N  -- 1 -- cosh 8. (4.8) 

e,(s) = e,-; cosh 8 (4.9) 

(O) ; ( :> 
Hence we obtain 

fs = f +; cosh 8 (4.10) 
so that we also have the identifications, e,(s) =+em( Q) and fs = f o ,  subject to (4.3). 

The surface energy of the biquadratic Hamiltonian (4.5) is 
f b Q  = f  +: (4.11) 

with cosh 8 = in (2.25). A numerical evaluation of the sums gives fbQ = 1.655 009. . . , 
in precise agreement with the estimate obtained from the finite-size BA data of [28]. 

5. Discussion 

We have derived the surface energy for models related via the Temperley-Lieb 
equivalence from the Bethe ansatz solution of the corresponding X X Z  chain. The 
matrix representations of the models considered here are of size 22Lx22L for Hxxz, 
Q L  x QL for HQ and (2s + for H,. For all of the cases examined to 
date, there has been a one-to-one correspondence between the ground-state energies 
of the models. We also expect this faithfulness of the various representations to extend 
to the gaps in the excitation spectra. In this regard, a direct calculation of the gap of 
H b Q  via the corresponding three-state vertex model [31] directly confirms the result 
obtained from the X X Z  chain via the Temperley-Lieb algebra [28]. We would thus 
expect the X X Z  result (2.31) to apply to the Potts and spin-s chains. Our results 
should also be directly applicable to the anisotropic spin-1 Hamiltonian which satisfies 
the Temperley-Lieb algebra for all values of Q [29]. 

Nore added in proof: The spin-s Hamiltonians defined in (4.1) and (4.2) have also been discussed by Kliimper 
[34] who has identified the corresponding (2s + 1)-state vertex models. The direct calculations confirm that 
the chains are massive with a gap in the eigenspectrum related to in agreement with the findings of 
[17,18]. 

x (2s + 
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Appendix 1. Fourier series 

We use the Fourier series pair defined by 
00 

f ( a ) =  fn eina 
n=-m 

1 "  
2T -" 

f ,  =- I d a  f ( a )  e-ina, 

A useful result is the convolution formula 

( A l . l )  

(A1.2) 

(A1.3) 
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We also make use of the identity 

769 

(A1.4) 

Appendix 2. Analysis of the integral IN 

Here we examine the asymptotic behaviour of the integral (2.22) as N -, 00. We begin 
by writing the root density (2.11) as 

(A2.1) 

where K and dn(z, k) are elliptic functions of modulus k [33] with K ’ I K  = @/T and 
so with elliptic nome q = e-’. From the definition (2.9) we then have 

K 
a , ( ( ~ ) = - i . d n ( K a / ~ ,  k )  

72 

1 
=- sin-’[sn(Ka/.rr, k)] 
T 

(A2.2) 

and therefore 

K 
a,( a )  = - [ 1 - k 2  sin2( T Z ) ] ” ~ .  (A2.3) 

To get the correct leading-order behaviour, it suffices to approximate u N ( a )  by 

7T2 

a,(a) in I N .  Changing variables from a to Z and using (A2.3) then gives 

dZ[1-k2s in2(~Z)]1’2  

In obtaining the limits of integration we used the sum rule 

2 
d a  u N ( ~ )  = 1 f- 

N 

(A2.4) 

(A2.5) 

which follows from the definition (2.9). The result (A2.4) can be broken into three 
pieces: 

K 
I N  =y ( p I - t p I I + p I I I )  (A2.6) 

T 

where 
/ f l / Z + I / N  r -112 \ 

P,=-(J d Z + J  [ 1 - k 2  sin2( TZ)]‘/~ 
1/2 - l / 2 - l / N  

1 / 2  

P --!- [ 1 - k2 sin2( :)] 
N 

(A2.7) 

(A2.8) 
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with 
n 

(A2.10) 

The Euler-Maclaurin formula (see e.g. [7]) then tells us that Pill is o( 1/ N); in fact a 
saddle-point treatment following [ 121 shows that it decreases exponentially with N. 
For the remaining terms, we have 

C' J ;  = 2- n + f- " + + . . . + f n  - I + ifn. 
( = - n  

k' 
Pll=N (A2.11) 

where k' = is the modulus conjugate to k; and finally 

PI = -2 dZ[ 1 - k2 cos2( T Z ) ] " ~  (A2.12) 

(A2.13) 

Collecting these results, we have 

+ higher-order terms. 
Kk' I --- 
lr2N N -  (A2.14) 

Use of the relation [333 

(A2.15) 

then leads to (2.24). 
For the lowest state in each of the remaining sectors, the sum rule (A2.5) is replaced 

by 

(A2.16) 

with r as defined in (2.29). Then 

(A2.17) 

where 

[ 1 - k2 sin2( T Z ) ] " ~  (A2.18) 
1 / 2 + ( 1 + r ) / N  - I /2+r /  N 

- l / 2 - ( 1 + r ) / N  
d Z + {  

1 / 2 - r / N  

(A2.19) 

1 1 / 2 - r / N  

-1/2+r/  N N i = - n  
dZ[ 1 - k2 sin2( TZ)]"~ [ - i' S (Z -') - 1 1 .  

N 
Pi;! = (A2.20) 

As N + a ,  we find 

(A2.21) 
2(1+2r)k' 

N 
py) z - 

k' 
N 

pi;) - - (A2.22) 

with Pi;! decreasing exponentially with N. Inserting these results in (A2.17) gives (2.30). 
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